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Note 

About the Time Evolving Voronoi Tessellation 

1. TNTRODUCTI~N 

Voronoi diagrams are relevant in different areas of physics such as condensed 
non-crystalline systems, including liquids, metallic glasses, and oxide glasses [l-2]. 
Their construction depends strongly on the algorithm one uses, which can range 
from classical geometrical methods to construct the vertices of the polyhedra [3] 
to more complicated procedures that make use of various lemmas and theorems to 
extract the number of faces [4-S]. 

All these algorithms are not very easy to handle; we therefore decided to use 
more simple arguments on a finite lattice. These have already been introduced by 
Kiang [7] who used a 80 x 80 point lattice covering a square and a 20 x 20 x 20 
point lattice filling a cube. Now due to the great improvement in the computing 
facilities we can handle a 400 x 400 x 400 cubic lattice. 

In Ref. [7] the size distribution of random Voronoi segments has also been 
analyzed and the following approximate distribution function derived, 

where p(x) is the probability of having a value x. This result is similar to the one 
derived from Mott [8] for the mass fragmentation 

Am) = 

e-(2ml<m))05 

-(24<m>)05 dm 
(2) 

and rederived from Brostow and Rogers in 1985 [9] by using the theory of infor- 
mation. By using approximate methods we can easily derive the Voronoi diagrams 
and the related parameters and we can also explore intermediate situations in which 
the diagrams are not yet completely developed. This could be the case of foams in 
which the signals start from the various nuclei at shifted times and therefore 
generate a dynamical rather than a static situation. 

Once we have obtained these results we shall limit our discussion to a qualitative 
level and we will not be able to produce approximate statistics because the resulting 
segments are not straight and their length is a function of the chosen time. 
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2. THE TWO-DIMENSIONAL ALGORITHM 

Given a certain value of pixels (which depends on the computer’s memory) we 
introduce a two-dimensional lattice defined by pixels x pixels points L,,, that cover 
a square side x side. Consider a set of points r, that are randomly distributed in the 
plane: 

x, = R[O, side], 

y, = R[O, side], 

r, = x,i+ yr”j: 

Dynamlcal Voronol foams random polnts 
nuclel=lOO side= 100.00 plxels=400 
numl=1512 num2=8087 time = 7.00 
Vexp= 1.00 nodes=9 
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FIG. 1. The Voronoi diagram tessellations are drawn through little black squares. The nuclei are 
drawn through small black circles and the bigger circles mark the nodes. 
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These points become the centers of expansion of the signal at shifted times given by 

tj = R[O, realtime], 

where realtime is the time at which we perform the analysis, In order to simplify the 
situation we assume a simple expansion law given by a linear time dependence, 

Radiusi = F (realtime - tj). 

Due to the complexity of the problem we start with a first set of random points in 
the square, each point being generated at a different time. If an expanding circle 
reaches one of the nuclei we start again with a new set of points. The final distribu- 

Dynamlcal Voronol foams Gausslan points 
nuclal=40 side= 100.00 pixels=400 
numl=182 num2=2673 tlme = 4.00 
Vexp= 1.00 sigma = 33.33 nodes=1 
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FIG. 2. The same as in Fig. 1 but with a Gaussian distribution of nuclei without marking the nodes. 
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tion will appear to be somewhat non-random in the sense that there are very few 
close first neighbours. 

We introduce the concept of temporal distance t,, that is, the time at which an 
expanding circle from the nucleus reaches the considered lattice point. We introduce 
the following definitions: 

lines *an element L,, belongs to a side of the dynamical polygons when the 
temporal distance from the two nearest nuclei (timely speaking) are greater than 
realtime and their difference is less than the time needed to cross the element. 

nodes * the same definition as for the lines but applied to the three nearest 
nuclei. 

In order to complete the process we finally add the elements which have not yet 
collided. 

We now illustrate the procedure with selected results. In Fig. 1 we show a typical 
situation in which the nuclei are randomly generated in the square and in Fig. 2 we 
show another one in which the nuclei are generated through a Gaussian distribu- 
tion centered in the center of the square and with a dispersion as indicated in the 
figure. We note that now in both cases the expanding circles meet at curved lines 
rather than at straight ones and that this is due to the time delay of the signal from 
the various nuclei. This method is named the Johnson-Mehl, 1939, subdivision of 
space [lo]. 

3. THE THREE-DIMENSIONAL ALGORITHM 

The same technique can easily be applied to a space containing one more dimen- 
sion. We now work on a three-dimensional lattice Lkmn to cover a cube with voxels. 

The procedures to generate the points are similar to the ones of Section 2 and the 
faces, edges, and nodes are intersections of two, three, and four expanding spheres, 
respectively. We then add the points that are still expanding. A typical run shown 
in Figs. 3 and 4 represents the spatial distribution of the nuclei denoted by spheres 
at the end of little vertical sticks. In order to take into account the great variety of 
prospectives we introduce the observer’s parameters: latitude, longitude, and 
distance. 

Also, here three expanding spheres meet in curved lines (the edges) and two 
expanding shells generate (when they intersect) curved surfaces rather than planes. 

4. CONCLUDING REMARKS 

Thanks to the increased computing velocity (more MIPS) and the available 
dynamical memory (more Mb) we can easily divide the space in many little cubes 
and in every point to compute the time distance from the various nuclei. This 
allows us in a simple way to build approximate Voronoi diagrams. More detailed 
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3-D Voronoi foams-Points displacement 
random distribution 

nuclei=30 side= 100.00 
longitude= 30.00 latidude- 3OdJO . ..$!etance= 100.00 :’ ,:’ . ..’ 

FIG. 3. The random distribution of nuclei in a cube. 
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3-D Voronoi - uniform expanslon - 
random distribution 
points =30 s= 100.00 pixels=400 
longitude= 30.00 latitude- 38.00 distance= 100.00 
nodes -3 time= 39.10 ,” ;,. 

FIG. 4. The nodes, the edges, and the not yet collided shells are drawn with symbols of respectively 
decreasing size. 
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computations on the statistics of the obtained segments similar to those performed 
by Krishnamurthy, Brostow, and Sochanski [ 111 are in progress. 

ACKNOWLEDGMENTS 

I thank the two referees for useful suggestions and A. D’Adda for careful reading of the manuscript. 
The numerical codes use the NAG library for mathematical help and DISSPLA 11.0 like a plotting 
package. 

REFERENCES 

1. R. COLLINS, “Melting and Statistical Geometry of Simple Liquids, ” in Phase Transition and Critical 
Phenomena, edited by C. Domb and M. S. Green (Academic Press, New York, 1972) Vol. 2, p. 271. 

2. G. S. CARGILL III, in Solid State Physics, edited by F. Seitz, D. Turnbull, and H. Ehrenreich 
(Academic Press, New York, 1975), Vol. 30, p. 227. 

3. J. L. FINNEY, J. Comput. Phys. 32, 137 (1979). 
4. M. TANEMURA, T. OGAWA, AND N. OGITA, J. Comput. Phys. 51, 191 (1983). 
5. W. BROSTOW AND J. P. DLJSSAULT, J. Comput. Phys. 29, 81 (1978). 
6. R. RIEDINGER, M. HABAR, P. OELHAFEN, AND H. J. GUNTHERODT, J. Compuf. Phys. 74, 61 (1988). 
7. T. KIANG, Z. Astrophys. 64, 433 (1966). 
8. N. F. MOTT, Proc. R. Sot. A 189, 300 (1947). 
9. W. BROSTOW AND H. C. ROGERS, Mater. Chem. Phys. 12, 499 (1985). 

10. W. A. JOHNSON, R. F. MEHL, Trans. Am. Inst. Min. Metal. Eng. 135, 416 (1939). 
11. V. KRISHNAMURTHY, W. BROSTOW, AND J. S. SOCHANSKI, Mater. Chem. Phys. 20, 451 (1988). 

RECEIVED: July 14, 1989; REVISED: August 14, 1990 

L. ZANINETTI 

Istituto di Fisica Generale 
Via Pietro Giuria I 

10125 Turin 
Italy 


